全国直销电话:4006-854-568
IT-technology
以人为本,众志成城,以“用户至上”.“服务上乘”为原则,
追求产品和服务高质量,努力实现与客户之间真诚有效的沟通,
不断地圆梦、奔跑与腾飞。
新闻动态   NEWS
ChatGPT的工作原理,这篇文章说清楚了 -北京赛维博信科技发展有限公司
来源:本人摘自网络,如有侵权请联系删除 | 作者:svbx001 | 发布时间: 2023-05-06 | 4385 次浏览 | 分享到:

那么,这对数字识别网络来说是如何更详细地工作的呢?我们可以认为这个网络是由 11 个连续的层组成的,我们可以用图标来概括它(激活函数显示为独立的层):

在开始时,我们向第一层输入实际的图像,用像素值的二维阵列表示。在最后一层,我们得到了一个由 10 个值组成的数组,我们可以认为这表示网络对图像对应于 0 到 9 的每个数字的 “确定程度”。

输入图像(手写的 4),最后一层的神经元的值就是:

换句话说,神经网络此时已经 “非常确定” 这个图像是 4,为了实际得到输出 “4”,我们只需挑选出数值最大的神经元的位置。

但是,如果我们再往前看一步呢?网络中的最后一个操作是一个所谓的 softmax,它试图 “强制确定”。但在这之前,神经元的值是:

代表 “4” 的神经元仍然有最高的数值。但在其他神经元的数值中也有信息。我们可以期望这个数字列表在某种意义上可以用来描述图像的 “本质”,从而提供我们可以用作嵌入的东西。因此,例如,这里的每一个 4 都有一个稍微不同的 “签名”(或 “特征嵌入”) —— 都与 8 的非常不同:

在这里,我们基本上是用 10 个数字来描述我们的图像特征。但通常情况下,使用比这更多的数字会更好。例如,在我们的数字识别网络中,我们可以通过挖掘前一层得到一个 500 个数字的阵列。而这可能是一个合理的数组,作为 “图像嵌入” 使用。

如果我们想对手写数字的 “图像空间” 进行明确的可视化,我们需要 “降低维度”,有效地将我们得到的 500 维向量投射到,例如,三维空间:

我们刚刚谈到为图像创建一个特征(从而嵌入),有效地基于识别图像的相似性,确定(根据我们的训练集)它们是否对应于同一个手写数字。如果我们有一个训练集,比如说,确定每张图片属于 5000 种常见类型的物体(猫、狗、椅子…… ),我们就可以更普遍地对图片做同样的事情。

通过这种方式,我们可以制作一个图像嵌入,它被我们对常见物体的识别所 “锚定”,但然后根据神经网络的行为 “围绕它进行概括”。关键是,只要这种行为与我们人类感知和解释图像的方式相一致,这将最终成为一个 “对我们来说是正确的” 的嵌入,并在实践中做 “类似人类判断” 的任务时有用。

好吧,那么我们如何遵循同样的方法来寻找单词的嵌入呢?关键是要从一个我们可以随时进行训练的关于单词的任务开始。而标准的任务是 “单词预测”。假设我们得到了 “the cat”。基于一个大型的文本语料库(比如说,网络上的文本内容),可能 “填空” 的不同单词的概率是多少?或者说,给定 “__ 黑 _”,不同的 “侧翼词” 的概率是多少?

 

服务热线

1391-024-6332