正好看到关于 CPU 性能比较的文章,就转载给大家参考,原文请移步
https://plantegg.github.io/2022/01/13/%E4%B8%8D%E5%90%8CCPU%E6%80%A7%E8%83%BD%E5%A4%A7PK/
文章时间:2022-01-13,因此很多结论仅供参考
相关文章:主流CPU性能摸底(Intel/AMD/鲲鹏/海光/飞腾) - https://zhuanlan.zhihu.com/p/540655373
先放出作者的对比结论(大家需要认真阅读,结论仅代表作者个人意见)
AMD 单核跑分数据比较好
MySQL 查询场景下 Intel 的性能好很多
xdb 比社区版性能要好
MySQL8.0 比 5.7 在多核锁竞争场景下性能要好
intel 最好,AMD 接近Intel,海光差的比较远但是又比鲲鹏好很多,飞腾最差,尤其是跨socket 简直是灾难
麒麟 OS 性能也比 CentOS 略差一些
从 perf 指标来看 鲲鹏 920 的 L1d 命中率高于 8163 是因为鲲鹏 L1 size 大;L2 命中率低于 8163,同样是因为鲲鹏 L2 size 小;同样 L1i 鲲鹏也大于 8163,但是实际跑起来 L1i Miss Rate 更高,这说明 ARM 对 L1d 使用效率低
整体来说AMD用领先了一代的工艺(7nm VS 14nm),在MySQL查询场景中终于可以接近Intel了,但是海光、鲲鹏、飞腾还是不给力。
比较 Hygon7280、Intel、AMD、鲲鹏 920、飞腾 2500 的性能情况
CPU型号 | Hygon 7280 | AMD 7H12 | AMD 7T83 | Intel 8163 | 鲲鹏920 | 飞腾2500 | 倚天710 |
---|---|---|---|---|---|---|---|
物理核数 | 32 | 32 | 64 | 24 | 48 | 64 | 128core |
超线程 | 2 | 2 | 2 | 2 | |||
路 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
NUMA Node | 8 | 2 | 4 | 2 | 4 | 16 | 2 |
L1d | 32K | 32K | 32K | 32K | 64K | 32K | 64K |
L2 | 512K | 512K | 512K | 1024K | 512K | 2048K | 1024K |
AMD 7T83 有 8 个 Die, 每个 Die L3 大小 32M,L2 大小 4MiB, 每个 Die上 L1I/L1D 各256 KiB,每个 Die 有 8 core,2、3 代都是带有独立 IO Die。
倚天 710 是一路服务器,单芯片 2 块对称的 Die。
IPC的说明:
IPC: insns per cycle insn/cycles 也就是每个时钟周期能执行的指令数量,越大程序跑的越快
程序的执行时间 = 指令数/(主频*IPC) //单核下,多核的话再除以核数
Hygon 7280 就是 AMD Zen 架构,最大 IPC 能到 5。
1 架构:x86_64CPU 2 CPU 运行模式:32-bit, 64-bit 3 字节序: Little Endian 4 Address sizes: 43 bits physical, 48 bits virtual 5 CPU: 128 6 在线 CPU 列表:0-127 7 每个核的线程数: 2 8 每个座的核数: 32 9 座: 2 10 NUMA 节点:8 11 厂商 ID:HygonGenuine 12 CPU 系列:24 13 型号: 1 14 型号名称: Hygon C86 7280 32-core Processor 15 步进: 1 16 CPU MHz:2194.586 17 BogoMIPS: 3999.63 18 虚拟化: AMD-V 19 L1d 缓存:2 MiB 20 L1i 缓存:4 MiB 21 L2 缓存:32 MiB 22 L3 缓存:128 MiB 23 NUMA 节点0 CPU:0-7,64-71 24 NUMA 节点1 CPU:8-15,72-79 25 NUMA 节点2 CPU:16-23,80-87 26 NUMA 节点3 CPU:24-31,88-95 27 NUMA 节点4 CPU:32-39,96-103 28 NUMA 节点5 CPU:40-47,104-111 29 NUMA 节点6 CPU:48-55,112-119 30 NUMA 节点7 CPU:56-63,120-127
架构说明:
每个 CPU 有4 个 Die,每个 Die 有两个 CCX(2 core-Complexes),每个CCX最多有4core(例如7280/7285)共享一个L3 cache;每个Die有两个Memory Channel,每个CPU带有8个Memory Channel,并且每个Memory Channel最多支持2根Memory;
海光7系列架构图:
曙光H620-G30A 机型硬件结构,CPU是hygon 7280(截图只截取了Socket0)
两路服务器,4 numa node,Z3 架构。
详细信息:
1 #lscpu 2 Architecture: x86_64 3 CPU op-mode(s): 32-bit, 64-bit 4 Byte Order: Little Endian 5 CPU(s): 256 6 On-line CPU(s) list: 0-255 7 Thread(s) per core: 2 8 Core(s) per socket: 64 9 Socket(s): 2 10 NUMA node(s): 4 11 Vendor ID: AuthenticAMD 12 CPU family: 25 13 Model: 1 14 Model name: AMD EPYC 7T83 64-Core Processor 15 Stepping: 1 16 CPU MHz: 2154.005 17 CPU max MHz: 2550.0000 18 CPU min MHz: 1500.0000 19 BogoMIPS: 5090.93 20 Virtualization: AMD-V 21 L1d cache: 32K 22 L1i cache: 32K 23 L2 cache: 512K 24 L3 cache: 32768K 25 NUMA node0 CPU(s): 0-31,128-159 26 NUMA node1 CPU(s): 32-63,160-191 27 NUMA node2 CPU(s): 64-95,192-223 28 NUMA node3 CPU(s): 96-127,224-255 29 #cat /sys/devices/system/cpu/cpu{0,1,8,16,30,31,32,128}/cache/index3/shared_cpu_map 30 00000000,00000000,00000000,000000ff,00000000,00000000,00000000,000000ff 31 00000000,00000000,00000000,000000ff,00000000,00000000,00000000,000000ff 32 00000000,00000000,00000000,0000ff00,00000000,00000000,00000000,0000ff00 33 00000000,00000000,00000000,00ff0000,00000000,00000000,00000000,00ff0000 34 00000000,00000000,00000000,ff000000,00000000,00000000,00000000,ff000000 35 00000000,00000000,00000000,ff000000,00000000,00000000,00000000,ff000000 36 00000000,00000000,000000ff,00000000,00000000,00000000,000000ff,00000000 37 00000000,00000000,00000000,000000ff,00000000,00000000,00000000,000000ff 38 #cat /sys/devices/system/cpu/cpu0/cache/index2/shared_cpu_map 39 00000000,00000000,00000000,00000001,00000000,00000000,00000000,00000001
L3 是 8 个物理核,16 个超线程共享,相当于单核 2MB,一块 CPU 有 8 个 L3,总共是256MB。
1 cat cpu0/cache/index3/shared_cpu_list 2 0-7,128-135 3 #cat cpu0/cache/index3/size 4 32768K 5 #cat cpu0/cache/index2/shared_cpu_list 6 0,128 7 #cat /sys/devices/system/cpu/cpu{0,1,8,16,30,31,32,128}/cache/index3/ 8 0-7,128-135 9 0-7,128-135 10 8-15,136-143 11 16-23,144-151 12 24-31,152-159 13 24-31,152-159 14 32-39,160-167 15 0-7,128-135
L1D、L1I 各为 2MiB,单物理核为 32KB,空跑 nop 的 IPC 为 6(有点吓人)。
1 perf stat ./cpu/test 2 Performance counter stats for process id '449650': 3 2,574.29 msec task-clock # 1.000 CPUs uti 4 0 context-switches # 0.000 K/sec 5 0 cpu-migrations # 0.000 K/sec 6 0 page-faults # 0.000 K/sec 7 8,985,622,182 cycles # 3.491 GHz 8 4,390,929 stalled-cycles-frontend # 0.05% frontend 9 4,387,560,442 stalled-cycles-backend # 48.83% backend 10 53,711,907,863 instructions # 5.98 insn per 11 # 0.08 stalled 12 418,902,363 branches # 162.725 M/sec 13 15,036 branch-misses # 0.00% of all b 14 2.574347594 seconds time elapsed 15
sysbench 测 7T83 比 7H12 略好,可能是 ECS、OS 等带来的差异。
测试环境:4.19.91-011.ali4000.alios7.x86_64,5.7.34-log MySQL Community Server (GPL)。
测试核数 | AMD EPYC 7H12 2.5G(QPS、IPC) | 说明 |
---|---|---|
单核 | 24363 0.58 | CPU跑满 |
一对HT | 33519 0.40 | CPU跑满 |
2物理核(0-1) | 48423 0.57 | CPU跑满 |
2物理核(0,32) 跨node | 46232 0.55 | CPU跑满 |
2物理核(0,64) 跨socket | 45072 0.52 | CPU跑满 |
4物理核(0-3) | 97759 0.58 | CPU跑满 |
16物理核(0-15) | 367992 0.55 | CPU跑满,sys占比20%,si 10% |
32物理核(0-31) | 686998 0.51 | CPU跑满,sys占比20%, si 12% |
64物理核(0-63) | 1161079 0.50 | CPU跑到95%以上,sys占比20%, si 12% |
64物理核(0-31,64-95) | 964441 0.49 | socket2上的32核一直比较闲,数据无参考意义 |
64物理核(0-31,64-95) | 1147846 0.48 | 重启mysqld,立即绑核,sysbench 在32-63上,导致0-31的CPU只能跑到89% |
说明,压测过程动态通过 taskset 绑核,所以会有数据残留其它核的 cache 问题。
跨 socket taskset 绑核的时候要压很久任务才会跨 socket 迁移过去,也就是刚 taskset 后CPU 是跑不满的。
1 numastat -p 437803 2 Per-node process memory usage (in MBs) for PID 437803 (mysqld) 3 Node 0 Node 1 Node 2 4 --------------- --------------- --------------- 5 Huge 0.00 0.00 0.00 6 Heap 1.15 0.00 5403.27 7 Stack 0.00 0.00 0.09 8 Private 1921.60 16.22 10647.66 9 ---------------- --------------- --------------- --------------- 10 Total 1922.75 16.22 16051.02 11 Node 3 Total 12 --------------- --------------- 13 Huge 0.00 0.00 14 Heap 0.03 5404.45 15 Stack 0.00 0.09 16 Private 16.20 12601.68 17 ---------------- --------------- --------------- 18 Total 16.23 18006.22
AMD EPYC 7H12 64-Core(ECS,非物理机),最大 IPC 能到 5。
1 lscpu 2 Architecture: x86_64 3 CPU op-mode(s): 32-bit, 64-bit 4 Byte Order: Little Endian 5 CPU(s): 64 6 On-line CPU(s) list: 0-63 7 Thread(s) per core: 2 8 Core(s) per socket: 16 9 座: 2 10 NUMA 节点:2 11 厂商 ID:AuthenticAMD 12 CPU 系列:23 13 型号: 49 14 型号名称: AMD EPYC 7H12 64-Core Processor 15 步进: 0 16 CPU MHz:2595.124 17 BogoMIPS: 5190.24 18 虚拟化: AMD-V 19 超管理器厂商: KVM 20 虚拟化类型: 完全 21 L1d 缓存:32K 22 L1i 缓存:32K 23 L2 缓存:512K 24 L3 缓存:16384K 25 NUMA 节点0 CPU:0-31 26 NUMA 节点1 CPU:32-63
AMD EPYC 7T83 ECS
1 cd /sys/devices/system/cpu/cpu0 2 cat cache/index0/size 3 32K 4 cat cache/index1/size 5 32K 6 cat cache/index2/size 7 512K 8 cat cache/index3/size 9 32768K 10 lscpu 11 Architecture: x86_64 12 CPU op-mode(s): 32-bit, 64-bit 13 Byte Order: Little Endian 14 CPU(s): 16 15 On-line CPU(s) list: 0-15 16 Thread(s) per core: 2 17 Core(s) per socket: 8 18 座:1 19 NUMA 节点:1 20 厂商 ID:AuthenticAMD 21 CPU 系列:25 22 型号:1 23 型号名称:AMD EPYC 7T83 64-Core Processor 24 步进:1 25 CPU MHz:2545.218 26 BogoMIPS:5090.43 27 超管理器厂商:KVM 28 虚拟化类型:完全 29 L1d 缓存:32K 30 L1i 缓存:32K 31 L2 缓存:512K 32 L3 缓存:32768K 33 NUMA 节点0 CPU:0-15
stream:
1 for i in $(seq 0 15); do echo $i; numactl -C $i -m 0 ./bin/stream -W 2 0 3 STREAM copy latency: 0.68 nanoseconds 4 STREAM copy bandwidth: 23509.84 MB/sec 5 STREAM scale latency: 0.69 nanoseconds 6 STREAM scale bandwidth: 23285.51 MB/sec 7 STREAM add latency: 0.96 nanoseconds 8 STREAM add bandwidth: 25043.73 MB/sec 9 STREAM triad latency: 1.40 nanoseconds 10 STREAM triad bandwidth: 17121.79 MB/sec 11 1 12 STREAM copy latency: 0.68 nanoseconds 13 STREAM copy bandwidth: 23513.96 MB/sec 14 STREAM scale latency: 0.68 nanoseconds 15 STREAM scale bandwidth: 23580.06 MB/sec 16 STREAM add latency: 0.96 nanoseconds 17 STREAM add bandwidth: 25049.96 MB/sec 18 STREAM triad latency: 1.35 nanoseconds 19 STREAM triad bandwidth: 17741.93 MB/sec
这次对比测试的 Intel 8163 CPU 信息如下,最大IPC 是4:
1 lscpu 2 Architecture: x86_64 3 CPU op-mode(s): 32-bit, 64-bit 4 Byte Order: Little Endian 5 CPU(s): 96 6 On-line CPU(s) list: 0-95 7 Thread(s) per core: 2 8 Core(s) per socket: 24 9 Socket(s): 2 10 NUMA node(s): 1 11 Vendor ID: GenuineIntel 12 CPU family: 6 13 Model: 85 14 Model name: Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz 15 Stepping: 4 16 CPU MHz: 2499.121 17 CPU max MHz: 3100.0000 18 CPU max MHz: 3100.0000 19 CPU max MHz: 3100.0000 20 Virtualization: VT-x 21 Virtualization: VT-x 22 L1i cache: 32K 23 L2 cache: 1024K 24 L3 cache: 33792K 25 NUMA node0 CPU(s): 0-95 26 -----8269CY 27 #lscpu 28 Architecture: x86_64 29 CPU op-mode(s): 32-bit, 64-bit 30 Byte Order: Little Endian 31 CPU(s): 104 32 On-line CPU(s) list: 0-103 33 Thread(s) per core: 2 34 Core(s) per socket: 26 35 Socket(s): 2 36 NUMA node(s): 2 37 Vendor ID: GenuineIntel 38 CPU family: 6 39 Model: 85 40 Model name: Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz 41 Stepping: 7 42 CPU MHz: 3200.000 43 CPU max MHz: 3800.0000 44 CPU min MHz: 1200.0000 45 BogoMIPS: 4998.89 46 Virtualization: VT-x 47 L1d cache: 32K 48 L1i cache: 32K 49 L2 cache: 1024K 50 L3 cache: 36608K 51 NUMA node0 CPU(s): 0-25,52-77 52 NUMA node1 CPU(s): 26-51,78-103
如下图是8269CY和E5-2682上跑的MySQL在相同业务、相同流量下的差异:
CPU使用率差异(下图8051C是E5-2682,其它是 8269CY,主频也有30%的差异)
1 numactl -H 2 available: 4 nodes (0-3) 3 node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 4 node 0 size: 192832 MB 5 node 0 free: 146830 MB 6 node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 7 node 1 size: 193533 MB 8 node 1 free: 175354 MB 9 node 2 cpus: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 10 node 2 size: 193533 MB 11 node 2 free: 175718 MB 12 node 3 cpus: 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 13 node 3 size: 193532 MB 14 node 3 free: 183643 MB 15 node distances: 16 node 0 1 2 3 17 0: 10 12 20 22 18 1: 12 10 22 24 19 2: 20 22 10 12 20 3: 22 24 12 10 21 22 lscpu 23 Architecture: aarch64 24 Byte Order: Little Endian 25 CPU(s): 96 26 On-line CPU(s) list: 0-95 27 Thread(s) per core: 1 28 Core(s) per socket: 48 29 Socket(s): 2 30 NUMA node(s): 4 31 Model: 0 32 CPU max MHz: 2600.0000 33 CPU min MHz: 200.0000 34 BogoMIPS: 200.00 35 L1d cache: 64K 36 L1i cache: 64K 37 L2 cache: 512K 38 L3 cache: 24576K 39 NUMA node0 CPU(s): 0-23 40 NUMA node1 CPU(s): 24-47 41 NUMA node2 CPU(s): 48-71 42 NUMA node3 CPU(s): 72-95 43 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma dcpop asimddp asimdfhm
飞腾2500用nop去跑IPC的话,只能到1,但是跑其它代码能到2.33
1 lscpu
2 Architecture: aarch643 Byte Order: Little Endian
4 CPU(s): 128
5 On-line CPU(s) list: 0-127
6 Thread(s) per core: 17 Core(s) per socket: 64
8 Socket(s): 2
9 NUMA node(s): 16
10 Model: 3
11 BogoMIPS: 100.00
12 L1d cache: 32K
13 L1i cache: 32K14 L2 cache: 2048K
15 L3 cache: 65536K
16 NUMA node0 CPU(s): 0-7
17 NUMA node1 CPU(s): 8-15
18 NUMA node2 CPU(s): 16-2319 NUMA node3 CPU(s): 24-31
20 NUMA node4 CPU(s): 32-39
21 NUMA node5 CPU(s): 40-4722 NUMA node6 CPU(s): 48-55
23 NUMA node7 CPU(s): 56-63
24 NUMA node8 CPU(s): 64-7125 NUMA node9 CPU(s): 72-79
26 NUMA node10 CPU(s): 80-87
27 NUMA node11 CPU(s): 88-95
28 NUMA node12 CPU(s): 96-10329 NUMA node13 CPU(s): 104-111
30 NUMA node14 CPU(s): 112-119
31 NUMA node15 CPU(s): 120-12732 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
3334 perf stat ./nop
35 failed to read counter stalled-cycles-frontend
36 failed to read counter stalled-cycles-backend
37 failed to read counter branches
38 Performance counter stats for './nop':
39 78638.700540 task-clock (msec) # 0.999 CPUs utilized
40 1479 context-switches # 0.019 K/sec
41 55 cpu-migrations # 0.001 K/sec
42 37 page-faults # 0.000 K/sec
43 165127619524 cycles # 2.100 GHz
44 <not supported> stalled-cycles-frontend
45 <not supported> stalled-cycles-backend
46 165269372437 instructions # 1.00 insns per cycle
47 <not supported> branches
48 3057191 branch-misses # 0.00% of all branches
49 78.692839007 seconds time elapsed
5051 dmidecode -t processor
52 dmidecode 3.0
Getting
53 SMBIOS data from sysfs.
54 SMBIOS 3.2.0 present.
55 # SMBIOS implementations newer than version 3.0 are not
56 # fully supported by this version of dmidecode.57 Handle 0x0004, DMI type 4, 48 bytes
58 Processor Information
59 Socket Designation: BGA3576
60 Type: Central Processor
61 Family: <OUT OF SPEC>
62 Manufacturer: PHYTIUM
63 ID: 00 00 00 00 70 1F 66 22
64 Version: S2500
65 Voltage: 0.8 V
66 External Clock: 50 MHz
67 Max Speed: 2100 MHz
68 Current Speed: 2100 MHz
69 Status: Populated, Enabled
70 Upgrade: Other
71 L1 Cache Handle: 0x0005
72 L2 Cache Handle: 0x0007
73 L3 Cache Handle: 0x0008
74 Serial Number: N/A
75 Asset Tag: No Asset Tag
76 Part Number: NULL
77 Core Count: 64
78 Core Enabled: 64
79 Thread Count: 64
80 Characteristics:
81 64-bit capable
82 Multi-Core
83 Hardware Thread
84 Execute Protection
85 Enhanced Virtualization
86 Power/Performance Control
2 Die,2 node。
1 lscpu
2Architecture: aarch64
3Byte Order: Little Endian
4 CPU(s): 128
5 On-line CPU(s) list: 0-127
6 Thread(s) per core: 17 Core(s) per socket: 128
8 Socket(s): 1
9 NUMA node(s): 210 Model: 0
11 BogoMIPS: 100.0012 L1d cache: 64
13 KL1i cache: 64K
14 L2 cache: 1024K
15 L3 cache: 65536K //64core share
16NUMA node0 CPU(s): 0-63
17 NUMA node1 CPU(s): 64-12718 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp sha512 sve asimdfhm dit uscat ilrcpc flagm ssbs sb dcpodp sve2 sveaes svepmull svebitperm svesha3 svesm4 flagm2 frint svei8mm svebf16 i8mm bf16 dgh
19
20 cat cpu{0,1,8,16,30,31,32,127}/cache/index3/shared_cpu_list
21 0-63
22 0-63
23 0-63
24 0-63
25 0-63
26 0-63
27 0-63
28 64-127
2930 grep -E "core|64.000" lat.log
31core:0
32 64.00000 59.65333 core:8
34 64.00000 62.26535 core:16
36 64.00000 59.41137 core:24
38
64.00000 55.836
39 core:32
40 64.00000 55.90941 core:40
42 64.00000 56.176
43core:48
44 64.00000 57.24045
core:56
46 64.00000 59.485
47core:64
48 64.00000 131.818
49core:72
50 64.00000 127.182
51 core:8052 64.00000 122.452
53 core:88
54 64.00000 121.673
55 core:96
56 64.00000 126.53357 core:104
58 64.00000 125.67359 core:112
60 64.00000 124.188
61 core:120
62 64.00000 130.202
6364 numactl -H
65 available: 2 nodes (0-1)
66 node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
67 node 0 size: 515652 MB68 node 0 free: 514913 MB
69 node 1 cpus: 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
70 node 1 size: 516086 MB
71node 1 free: 514815 MB
72 node distances:
73 node 0 1
74 0: 10 15
75 1: 15 10
以上两款CPU但从物理上的指标来看似乎AMD要好很多,从工艺上AMD也要领先一代(2年),从单核参数上来说是2.0 VS 2.5GHz,但是IPC 是5 VS 4,算下来理想的单核性能刚好一致(25=2.5 4)。
从外面的一些跑分结果显示也是AMD 要好,但是实际性能怎么样呢?
测试命令,这个测试命令无论在哪个CPU下,用2个物理核用时都是一个物理核的一半,所以这个计算是可以完全并行的:
1 taskset -c 1 /usr/bin/sysbench --num-threads=1 --test=cpu --cpu-max-prime=50000 run //单核用一个threads,绑核; HT用2个threads,绑一对HT
测试结果为耗时,单位秒
测试项 | AMD EPYC 7H12 2.5G CentOS 7.9 | Hygon 7280 2.1GHz CentOS | Hygon 7280 2.1GHz 麒麟 | Intel 8269 2.50G | Intel 8163 CPU @ 2.50GHz | Intel E5-2682 v4 @ 2.50GHz |
---|---|---|---|---|---|---|
单核 prime 50000 耗时 | 59秒 IPC 0.56 | 77秒 IPC 0.55 | 89秒 IPC 0.56; | 83 0.41 | 105秒 IPC 0.41 | 109秒 IPC 0.39 |
HT prime 50000 耗时 | 57秒 IPC 0.31 | 74秒 IPC 0.29 | 87秒 IPC 0.29 | 48 0.35 | 60秒 IPC 0.36 | 74秒 IPC 0.29 |
相同CPU下的 指令数 基本= 耗时 IPC 核数
以上测试结果显示Hygon 7280单核计算能力是要强过Intel 8163的,但是超线程在这个场景下太不给力,相当于没有。
当然上面的计算Prime太单纯了,代表不了复杂的业务场景,所以接下来用MySQL的查询场景来看看。
如果是arm芯片在计算prime上明显要好过x86,猜测是除法取余指令上有优化
1 taskset -c 11 sysbench cpu --threads=1 --events=50000 run 2 sysbench 1.0.20 (using bundled LuaJIT 2.1.0-beta2)
测试结果为10秒钟的event
测试项 | FT2500 2.1G | 鲲鹏920-4826 2.6GHz | Intel 8163 CPU @ 2.50GHz | Hygon C86 7280 2.1GHz | AMD 7T83 |
---|---|---|---|---|---|
单核 prime 10秒 events | 21626 IPC 0.89 | 30299 IPC 1.01 | 8435 IPC 0.41 | 10349 IPC 0.63 | 40112 IPC 1.38 |
分别将 MySQL 5.7.34 社区版部署到 inte l+ AliOS 以及 hygon 7280 + CentOS 上,将mysqld绑定到单核,一样的压力配置均将CPU跑到100%,然后用sysbench测试点查, HT表示将mysqld绑定到一对HT核。
测试命令类似如下:
1 sysbench --test='/usr/share/doc/sysbench/tests/db/select.lua' --oltp_tables_count=1 --report-interval=1 --oltp-table-size=10000000 --mysql-port=3307 --mysql-db=sysbench_single --mysql-user=root --mysql-password='Bj6f9g96!@#' --max-requests=0 --oltp_skip_trx=on --oltp_auto_inc=on --oltp_range_size=5 --mysql-table-engine=innodb --rand-init=on --max-time=300 --mysql-host=x86.51 --num-threads=4 run
测试结果(测试中的差异AMD、Hygon CPU跑在CentOS7.9, intel CPU、Kunpeng 920 跑在AliOS上, xdb表示用集团的xdb替换社区的MySQL Server, 麒麟是国产OS):
测试核数 | AMD EPYC 7H12 2.5G | Hygon 7280 2.1G | Hygon 7280 2.1GHz 麒麟 | Intel 8269 2.50G | Intel 8163 2.50G | Intel 8163 2.50G XDB5.7 | 鲲鹏 920-4826 2.6G | 鲲鹏 920-4826 2.6G XDB8.0 | FT2500 alisql 8.0 本地–socket |
---|---|---|---|---|---|---|---|---|---|
单核 | 24674 0.54 | 13441 0.46 | 10236 0.39 | 28208 0.75 | 25474 0.84 | 29376 0.89 | 9694 0.49 | 8301 0.46 | 3602 0.53 |
一对HT | 36157 0.42 | 21747 0.38 | 19417 0.37 | 36754 0.49 | 35894 0.6 | 40601 0.65 | 无HT | 无HT | 无HT |
4物理核 | 94132 0.52 | 49822 0.46 | 38033 0.37 | 90434 0.69 350% | 87254 0.73 | 106472 0.83 | 34686 0.42 | 28407 0.39 | 14232 0.53 |
16物理核 | 325409 0.48 | 171630 0.38 | 134980 0.34 | 371718 0.69 1500% | 332967 0.72 | 446290 0.85 //16核比4核好! | 116122 0.35 | 94697 0.33 | 59199 0.6 8core:31210 0.59 |
32物理核 | 542192 0.43 | 298716 0.37 | 255586 0.33 | 642548 0.64 2700% | 588318 0.67 | 598637 0.81 CPU 2400% | 228601 0.36 | 177424 0.32 | 114020 0.65 |
麒麟OS下CPU很难跑满,大致能跑到90%-95%左右,麒麟上装的社区版MySQL-5.7.29;飞腾要特别注意mysqld所在socket,同时以上飞腾数据都是走–sock压测所得,32core走网络压测QPS为:99496(15%的网络损耗)[^说明]
如果是飞腾跨 socket 影响很大,mysqld 二进制跨 socket 性能会下降 30% 以上。
对于鲲鹏 920,双路服务器上测试,mysqld 绑在 node0, 但是分别将mysqld二进制load进不同的node上的page cache,然后执行点查:
mysqld | node0 | node1 | node2 | node3 |
---|---|---|---|---|
QPS | 190120 IPC 0.40 | 182518 IPC 0.39 | 189046 IPC 0.40 | 186533 IPC 0.40 |
以上数据可以看出这里 node0 到 node1 还是很慢的,居然比跨 socket 还慢,反过来说鲲鹏跨 socket 性能很好。
绑定 mysqld 到不同 node 的 page cache 操作:
1 systemctl stop mysql-server 2 vmtouch -e /usr/local/mysql/bin/mysqld 3 Files: 1 4 Directories: 0 5 Evicted Pages: 5916 (23M) 6 Elapsed: 0.00322 seconds 7 vmtouch -v /usr/local/mysql/bin/mysqld 8 /usr/local/mysql/bin/mysqld 9 [ ] 0/5916 10 Files: 1 11 Directories: 0 12 Resident Pages: 0/5916 0/23M 0% 13 Elapsed: 0.000204 seconds 14 taskset -c 24 md5sum /usr/local/mysql/bin/mysqld 15 grep mysqld /proc/`pidof mysqld`/numa_maps //检查mysqld具体绑定在哪个node上 16 00400000 default file=/usr/local/mysql/bin/mysqld mapped=3392 active=1 N0=3392 kernelpagesize_kB=4 17 0199b000 default file=/usr/local/mysql/bin/mysqld anon=10 dirty=10 mapped=134 active=10 N0=134 kernelpagesize_kB=4 18 01a70000 default file=/usr/local/mysql/bin/mysqld anon=43 dirty=43 mapped=120 active=43 N0=120 kernelpagesize_kB=4
在鲲鹏920+mysql5.7+alios,将内存分配锁在node0上,然后分别绑核在1、24、48、72core,进行sysbench点查对比“
Core1 | Core24 | Core48 | Core72 | |
---|---|---|---|---|
QPS | 10800 | 10400 | 7700 | 7700 |
以上测试的时候业务进程分配的内存全限制在node0上(下面的网卡中断测试也是同样内存结构):
1 numa-maps-summary.pl </proc/123853/numa_maps 2 N0 : 5085548 ( 19.40 GB) 3 N1 : 4479 ( 0.02 GB) 4 N2 : 1 ( 0.00 GB) 5 active : 0 ( 0.00 GB) 6 anon : 5085455 ( 19.40 GB) 7 dirty : 5085455 ( 19.40 GB) 8 kernelpagesize_kB: 2176 ( 0.01 GB) 9 mapmax : 348 ( 0.00 GB) 10 mapped : 4626 ( 0.02 GB)
对比测试,将内存锁在node3上,重复进行以上测试结果如下:
Core1 | Core24 | Core48 | Core72 | |
---|---|---|---|---|
QPS | 10500 | 10000 | 8100 | 8000 |
1 numa-maps-summary.pl </proc/54478/numa_maps 2 N0 : 16 ( 0.00 GB) 3 N1 : 4401 ( 0.02 GB) 4 N2 : 1 ( 0.00 GB) 5 N3 : 1779989 ( 6.79 GB) 6 active : 0 ( 0.00 GB) 7anon : 1779912 ( 6.79 GB) 8 dirty : 1779912 ( 6.79 GB) 9 kernelpagesize_kB: 1108 ( 0.00 GB) 10 mapmax : 334 ( 0.00 GB) 11 mapped : 4548 ( 0.02 GB)
机器上网卡eth1插在node0上,由以上两组对比测试发现网卡影响比内存跨node影响更大,网卡影响有20%。而内存的影响基本看不到(就近好那么一点点,但是不明显,只能解释为cache命中率很高了)。
此时软中断都在node0上,如果将软中断绑定到node3上,第72core的QPS能提升到8500,并且非常稳定。同时core0的QPS下降到10000附近。
测试机器只是用了一块网卡,网卡插在node0上。
一般网卡中断会占用一些CPU,如果把网卡中断挪到其它node的core上,在鲲鹏920上测试,业务跑在node3(使用全部24core),网卡中断分别在node0和node3,QPS分别是:179000 VS 175000 (此时把中断放到node0或者是和node3最近的node2上差别不大)
如果将业务跑在node0上(全部24core),网卡中断分别在node0和node1上得到的QPS分别是:204000 VS 212000
测试结果(测试中Hygon 7280分别跑在CentOS7.9和麒麟上, 鲲鹏/intel CPU 跑在AliOS、麒麟是国产OS):
tpcc测试数据,结果为1000仓,tpmC (NewOrders) ,未标注CPU 则为跑满了
测试核数 | Intel 8269 2.50G | Intel 8163 2.50G | Hygon 7280 2.1GHz 麒麟 | Hygon 7280 2.1G CentOS 7.9 | 鲲鹏 920-4826 2.6G | 鲲鹏 920-4826 2.6G XDB8.0 |
---|---|---|---|---|---|---|
1物理核 | 12392 | 9902 | 4706 | 7011 | 6619 | 4653 |
一对HT | 17892 | 15324 | 8950 | 11778 | 无HT | 无HT |
4物理核 | 51525 | 40877 | 19387 380% | 30046 | 23959 | 20101 |
8物理核 | 100792 | 81799 | 39664 750% | 60086 | 42368 | 40572 |
16物理核 | 160798 抖动 | 140488 CPU抖动 | 75013 1400% | 106419 1300-1550% | 70581 1200% | 79844 |
24物理核 | 188051 | 164757 1600-2100% | 100841 1800-2000% | 130815 1600-2100% | 88204 1600% | 115355 |
32物理核 | 195292 | 185171 2000-2500% | 116071 1900-2400% | 142746 1800-2400% | 102089 1900% | 143567 |
48物理核 | 19969l | 195730 2100-2600% | 128188 2100-2800% | 149782 2000-2700% | 116374 2500% | 206055 4500% |
tpcc并发到一定程度后主要是锁导致性能上不去,所以超多核意义不大。
如果在Hygon 7280 2.1GHz 麒麟上起两个MySQLD实例,每个实例各绑定32物理core,性能刚好翻倍:
测试过程CPU均跑满(未跑满的话会标注出来),IPC跑不起来性能就必然低,超线程虽然总性能好了但是会导致IPC降低(参考前面的公式)。可以看到对本来IPC比较低的场景,启用超线程后一般对性能会提升更大一些。
CPU核数增加到32核后,MySQL社区版性能追平xdb, 此时sysbench使用120线程压性能较好(AMD得240线程压)
32核的时候对比下MySQL 社区版在Hygon7280和Intel 8163下的表现:
测试项 | AMD EPYC 7H12 2.5G | Hygon 7280 2.1GHz | Intel 8163 CPU @ 2.50GHz |
---|---|---|---|
内存带宽(MiB/s) | 12190.50 | 6206.06 | 7474.45 |
内存延时(遍历很大一个数组) | 0.334ms | 0.336ms | 0.429ms |
stream 主要用于测试带宽,对应的时延是在带宽跑满情况下的带宽。
lat_mem_rd 用来测试操作不同数据大小的时延。总的来说带宽看stream、时延看lat_mem_rd
用stream测试带宽和latency,可以看到带宽随着numa距离不断减少、对应的latency不断增加,到最近的numa node有10%的损耗,这个损耗和numactl给出的距离完全一致。跨socket访问内存latency是node内的3倍,带宽是三分之一,但是socket1性能和socket0性能完全一致
1 time for i in $(seq 7 8 128); do echo $i; numactl -C $i -m 0 ./bin/stream -W 5 -N 5 -M 64M; done
2 numactl -C 7 -m 0 ./bin/stream -W 5 -N 5 -M 64M
3STREAM copy latency: 2.84 nanoseconds
4 STREAM copy bandwidth: 5638.21 MB/sec
5 STREAM scale latency: 2.72 nanoseconds
6 STREAM scale bandwidth: 5885.97 MB/sec
7 STREAM add latency: 2.26 nanoseconds
8 STREAM add bandwidth: 10615.13 MB/sec
9 STREAM triad latency: 4.53 nanoseconds
10 STREAM triad bandwidth: 5297.93 MB/sec
11 numactl -C 7 -m 1 ./bin/stream -W 5 -N 5 -M 64M
12 STREAM copy latency: 3.16 nanoseconds
13 STREAM copy bandwidth: 5058.71 MB/sec
14 STREAM scale latency: 3.15 nanoseconds
15 STREAM scale bandwidth: 5074.78 MB/sec
16 STREAM add latency: 2.35 nanoseconds17 STREAM add bandwidth: 10197.36 MB/sec
18 STREAM triad latency: 5.12 nanoseconds
19 STREAM triad bandwidth: 4686.37 MB/sec
20 numactl -C 7 -m 2 ./bin/stream -W 5 -N 5 -M 64M
21 STREAM copy latency: 3.85 nanoseconds22 STREAM copy bandwidth: 4150.98 MB/sec
23 STREAM scale latency: 3.95 nanoseconds
24 STREAM scale bandwidth: 4054.30 MB/sec
25 STREAM add latency: 2.64 nanoseconds
26 STREAM add bandwidth: 9100.12 MB/sec
27 STREAM triad latency: 6.39 nanoseconds28 STREAM triad bandwidth: 3757.70 MB/sec
29 numactl -C 7 -m 3 ./bin/stream -W 5 -N 5 -M 64M
30 STREAM copy latency: 3.69 nanoseconds31 STREAM copy bandwidth: 4340.24 MB/sec
32 STREAM scale latency: 3.62 nanoseconds
33 STREAM scale bandwidth: 4422.18 MB/sec
34 STREAM add latency: 2.47 nanoseconds
35 STREAM add bandwidth: 9704.82 MB/sec36 STREAM triad latency: 5.74 nanoseconds
37 STREAM triad bandwidth: 4177.85 MB/sec
3839 numactl -C 7 -m 7 ./bin/stream -W 5 -N 5 -M 64M
40 STREAM copy latency: 3.95 nanoseconds41 STREAM copy bandwidth: 4051.51 MB/sec
42 STREAM scale latency: 3.94 nanoseconds
43 STREAM scale bandwidth: 4060.63 MB/sec44 STREAM add latency: 2.54 nanoseconds
45 STREAM add bandwidth: 9434.51 MB/sec46 STREAM triad latency: 6.13 nanoseconds
47 STREAM triad bandwidth: 3913.36 MB/sec
4849 numactl -C 7 -m 10 ./bin/stream -W 5 -N 5 -M 64M
50 STREAM copy latency: 8.80 nanoseconds
51 STREAM copy bandwidth: 1817.78 MB/sec52 STREAM scale latency: 8.59 nanoseconds
53 STREAM scale bandwidth: 1861.65 MB/sec
54 STREAM add latency: 5.55 nanoseconds
55 STREAM add bandwidth: 4320.68 MB/sec56 STREAM triad latency: 13.94 nanoseconds
57 STREAM triad bandwidth: 1721.76 MB/sec
58
5960 numactl -C 7 -m 11 ./bin/stream -W 5 -N 5 -M 64M
61 STREAM copy latency: 9.27 nanoseconds
62 STREAM copy bandwidth: 1726.52 MB/sec
63 STREAM scale latency: 9.31 nanoseconds
64 STREAM scale bandwidth: 1718.10 MB/sec
65 STREAM add latency: 5.65 nanoseconds66 STREAM add bandwidth: 4250.89 MB/sec
67 STREAM triad latency: 14.09 nanoseconds
68 STREAM triad bandwidth: 1703.66 MB/sec
69
7071 numactl -C 88 -m 11 ./bin/stream -W 5 -N 5 -M 64M //在另外一个socket上测试本numa,和node0性能完全一致
72 STREAM copy latency: 2.93 nanoseconds73 STREAM copy bandwidth: 5454.67 MB/sec
74 STREAM scale latency: 2.96 nanoseconds75 STREAM scale bandwidth: 5400.03 MB/sec
76 STREAM add latency: 2.28 nanoseconds
77 STREAM add bandwidth: 10543.42 MB/sec
78 STREAM triad latency: 4.52 nanoseconds79 STREAM triad bandwidth: 5308.40 MB/sec
80
8182 numactl -C 7 -m 15 ./bin/stream -W 5 -N 5 -M 64M
83 STREAM copy latency: 8.73 nanoseconds
84 STREAM copy bandwidth: 1831.77 MB/sec
85 STREAM scale latency: 8.81 nanoseconds
86 STREAM scale bandwidth: 1815.13 MB/sec
87 STREAM add latency: 5.63 nanoseconds
88STREAM add bandwidth: 4265.21 MB/sec89 STREAM triad latency: 13.09 nanoseconds
90 STREAM triad bandwidth: 1833.68 MB/sec
Lat_mem_rd 用cpu7访问node0和node15对比结果,随着数据的加大,延时在加大,64M时能有3倍差距,和上面测试一致
下图 第一列 表示读写数据的大小(单位M),第二列表示访问延时(单位纳秒),一般可以看到在L1/L2/L3 cache大小的地方延时会有跳跃,远超过L3大小后,延时就是内存延时了
1 numactl -C 7 -m 0 ./bin/lat_mem_rd -W 5 -N 5 -t 64M //-C 7 cpu 7, -m 0 node0, -W 热身 -t stride
同样的机型,开关numa的测试结果,关numa 时延、带宽都差了几倍。
关闭numa的机器上测试结果随机性很强,这应该是和内存分配在那里有关系,不过如果机器一直保持这个状态反复测试的话,快的core一直快,慢的core一直慢,这是因为物理地址分配有一定的规律,在物理内存没怎么变化的情况下,快的core恰好分到的内存比较近。
同时不同机器状态(内存使用率)测试结果也不一样
11 numactl -C 7 -m 1 ./bin/stream -W 5 -N 5 -M 64M 12 STREAM copy latency: 2.05 nanoseconds 13 STREAM copy bandwidth: 7802.45 MB/sec 14 STREAM scale latency: 2.08 nanoseconds 15 STREAM scale bandwidth: 7681.87 MB/sec 16 STREAM add latency: 2.19 nanoseconds 17 STREAM add bandwidth: 10954.76 MB/sec 18 STREAM triad latency: 3.17 nanoseconds 19 STREAM triad bandwidth: 7559.86 MB/sec 20 21 numactl -C 7 -m 2 ./bin/stream -W 5 -N 5 -M 64M 22 STREAM copy latency: 3.51 nanoseconds 23 STREAM copy bandwidth: 4556.86 MB/sec 24 STREAM scale latency: 3.58 nanoseconds 25 STREAM scale bandwidth: 4463.66 MB/sec 26 STREAM add latency: 2.71 nanoseconds 27 STREAM add bandwidth: 8869.79 MB/sec 28 STREAM triad latency: 5.92 nanoseconds 29 STREAM triad bandwidth: 4057.12 MB/sec 30 31 numactl -C 7 -m 3 ./bin/stream -W 5 -N 5 -M 64M 32 STREAM copy latency: 3.94 nanoseconds 33 STREAM copy bandwidth: 4064.25 MB/sec 34 STREAM scale latency: 3.82 nanoseconds 35 STREAM scale bandwidth: 4188.67 MB/sec 36 STREAM add latency: 2.86 nanoseconds 37 STREAM add bandwidth: 8390.70 MB/sec 38 STREAM triad latency: 4.78 nanoseconds 39 STREAM triad bandwidth: 5024.25 MB/sec 40 41 numactl -C 24 -m 3 ./bin/stream -W 5 -N 5 -M 64M 42 STREAM copy latency: 4.10 nanoseconds 43 STREAM copy bandwidth: 3904.63 MB/sec 44 STREAM scale latency: 4.03 nanoseconds 45 STREAM scale bandwidth: 3969.41 MB/sec 46 STREAM add latency: 3.07 nanoseconds 47 STREAM add bandwidth: 7816.08 MB/sec 48 STREAM triad latency: 5.06 nanoseconds 49 STREAM triad bandwidth: 4738.66 MB/sec
可以看到跨numa(一个numa也就是一个socket,等同于跨socket)RT从1.5上升到2.5,这个数据比鲲鹏920要好很多。
1 lscpu
2 架构: x86_64
3 CPU 运行模式:32-bit, 64-bit
4 字节序: Little Endian
5 Address sizes: 43 bits physical, 48 bits virtual
6 CPU: 128
7 在线 CPU 列表:0-127
8 每个核的线程数: 2
9 每个座的核数: 32
10 座: 2
11 NUMA 节点:8
12 厂商 ID:HygonGenuine
13 CPU 系列:24
14 型号: 1
15 型号名称: Hygon C86 7280 32-core Processor
16 步进: 1
17 CPU MHz:2194.586
18 BogoMIPS: 3999.63
19 虚拟化: AMD-V
20 L1d 缓存:2 MiB
21 L1i 缓存:4 MiB
22 L2 缓存:32 MiB
23 L3 缓存:128 MiB
24 NUMA 节点0 CPU:0-7,64-71
25 UMA 节点1 CPU:8-15,72-79
26 NUMA 节点2 CPU:16-23,80-87
27 NUMA 节点3 CPU:24-31,88-95
28 NUMA 节点4 CPU:32-39,96-103
29 NUMA 节点5 CPU:40-47,104-111
30 NUMA 节点6 CPU:48-55,112-119
31 NUMA 节点7 CPU:56-63,120-127
32 //可以看到7号core比15、23、31号core明显要快,就近访问node 0的内存,跨numa node(跨Die)没有内存交织分配
33
34
35 time for i in $(seq 7 8 64); do echo $i; numactl -C $i -m 0 ./bin/stream -W 5 -N 5 -M 64M; done
36 7
37 STREAM copy latency: 1.38 nanoseconds
38 STREAM copy bandwidth: 11559.53 MB/sec
39 STREAM scale latency: 1.16 nanoseconds
40 STREAM scale bandwidth: 13815.87 MB/sec
41 STREAM add latency: 1.40 nanoseconds
42 STREAM add bandwidth: 17145.85 MB/sec
43 STREAM triad latency: 1.44 nanoseconds
44 STREAM triad bandwidth: 16637.18 MB/sec
45 15
46 STREAM copy latency: 1.67 nanoseconds
47 STREAM copy bandwidth: 9591.77 MB/sec
48 STREAM scale latency: 1.56 nanoseconds
49 STREAM scale bandwidth: 10242.50 MB/sec
50 STREAM add latency: 1.45 nanoseconds
51 STREAM add bandwidth: 16581.00 MB/sec
52 STREAM triad latency: 2.00 nanoseconds
53 STREAM triad bandwidth: 12028.83 MB/sec
54 23
55 STREAM copy latency: 1.65 nanoseconds
56 STREAM copy bandwidth: 9701.49 MB/sec
57 STREAM scale latency: 1.53 nanoseconds
58 STREAM scale bandwidth: 10427.98 MB/sec
59 STREAM add latency: 1.42 nanoseconds
60 STREAM add bandwidth: 16846.10 MB/sec
61 STREAM triad latency: 1.97 nanoseconds
62 STREAM triad bandwidth: 12189.72 MB/sec
63 31
64 STREAM copy latency: 1.64 nanoseconds
65 STREAM copy bandwidth: 9742.86 MB/sec
66 STREAM scale latency: 1.52 nanoseconds
67 STREAM scale bandwidth: 10510.80 MB/sec
68 STREAM add latency: 1.45 nanoseconds
69 STREAM add bandwidth: 16559.86 MB/sec
70 STREAM triad latency: 1.92 nanoseconds
71 STREAM triad bandwidth: 12490.01 MB/sec
72 39
73 STREAM copy latency: 2.55 nanoseconds
74 STREAM copy bandwidth: 6286.25 MB/sec
75 STREAM scale latency: 2.51 nanoseconds
76 STREAM scale bandwidth: 6383.11 MB/sec
77 STREAM add latency: 1.76 nanoseconds
78 STREAM add bandwidth: 13660.83 MB/sec
79 STREAM triad latency: 3.68 nanoseconds
80 STREAM triad bandwidth: 6523.02 MB/sec
如果这种芯片在bios里设置Die interleaving,4块die当成一个numa node吐出来给OS
1 lscpu
2 架构: x86_64
3 CPU 运行模式:32-bit, 64-bit
4 字节序: Little Endian
5 Address sizes: 43 bits physical, 48 bits virtual
6 CPU: 128
7 在线 CPU 列表:0-127
8 每个核的线程数: 2
9 每个座的核数: 32
10 座: 2
11 NUMA 节点:2
12 厂商 ID:HygonGenuine
13 CPU 系列:24
14 型号: 1
15 型号名称: Hygon C86 7280 32-core Processor
16 步进: 1
17CPU MHz:2108.234
18 BogoMIPS: 3999.45
19 虚拟化: AMD-V
20 L1d 缓存:2 MiB
21 L1i 缓存:4 MiB
22 L2 缓存:32 MiB
23 L3 缓存:128 MiB
24 //注意这里和真实物理架构不一致,bios配置了Die Interleaving Enable
25 //表示每路内多个Die内存交织分配,这样整个一路就是一个大Die
26 NUMA 节点0 CPU:0-31,64-95
27 NUMA 节点1 CPU:32-63,96-127
28 //enable die interleaving 后继续streaming测试
29 //最终测试结果表现就是7/15/23/31 core性能一致,因为默认一个numa内内存交织分配
30 //可以看到同一路下的四个die内存交织访问,所以4个node内存延时一样了(被平均),都不如就近快
31
32
33 time for i in $(seq 7 8 64); do echo $i; numactl -C $i -m 0 ./bin/stream -W 5 -N 5 -M 64M; done
34 7
35 STREAM copy latency: 1.48 nanoseconds
36 STREAM copy bandwidth: 10782.58 MB/sec
37 STREAM scale latency: 1.20 nanoseconds
38 STREAM scale bandwidth: 13364.38 MB/sec
39 STREAM add latency: 1.46 nanoseconds
40 STREAM add bandwidth: 16408.32 MB/sec
41 STREAM triad latency: 1.53 nanoseconds
42 STREAM triad bandwidth: 15696.00 MB/sec
43 15
44 STREAM copy latency: 1.51 nanoseconds
45 STREAM copy bandwidth: 10601.25 MB/sec
46 STREAM scale latency: 1.24 nanoseconds
47 STREAM scale bandwidth: 12855.87 MB/sec
48 STREAM add latency: 1.46 nanoseconds
49 STREAM add bandwidth: 16382.42 MB/sec
50 STREAM triad latency: 1.53 nanoseconds
51 STREAM triad bandwidth: 15691.48 MB/sec
52 23
53 STREAM copy latency: 1.50 nanoseconds
54 STREAM copy bandwidth: 10700.61 MB/sec
55 STREAM scale latency: 1.27 nanoseconds
56 STREAM scale bandwidth: 12634.63 MB/sec
57 STREAM add latency: 1.47 nanoseconds
58 STREAM add bandwidth: 16370.67 MB/sec
59 STREAM triad latency: 1.55 nanoseconds
60 STREAM triad bandwidth: 15455.75 MB/sec
61 31
62 STREAM copy latency: 1.50 nanoseconds
63 STREAM copy bandwidth: 10637.39 MB/sec
64 STREAM scale latency: 1.25 nanoseconds
65 STREAM scale bandwidth: 12778.99 MB/sec
66 STREAM add latency: 1.46 nanoseconds
67 STREAM add bandwidth: 16420.65 MB/sec
68 STREAM triad latency: 1.61 nanoseconds
69 STREAM triad bandwidth: 14946.80 MB/sec
70 39
71 STREAM copy latency: 2.35 nanoseconds
72 STREAM copy bandwidth: 6807.09 MB/sec
73 STREAM scale latency: 2.32 nanoseconds
74 STREAM scale bandwidth: 6906.93 MB/sec
75 STREAM add latency: 1.63 nanoseconds
76 STREAM add bandwidth: 14729.23 MB/sec
77 STREAM triad latency: 3.36 nanoseconds
78 STREAM triad bandwidth: 7151.67 MB/sec
79 47
80 STREAM copy latency: 2.31 nanoseconds
81 STREAM copy bandwidth: 6938.47 MB/sec
以华为泰山服务器(鲲鹏920芯片)配置为例:
Die Interleaving 控制是否使能DIE交织。使能DIE交织能充分利用系统的DDR带宽,并尽量保证各DDR通道的带宽均衡,提升DDR的利用率
1 for i in $(seq 0 8 24); do echo $i; numactl -C $i -m 0 ./bin/stream -W 5 -N 5 -M 64M; done
2 0
3 STREAM copy latency: 1.22 nanoseconds
4 STREAM copy bandwidth: 13166.34 MB/sec
5 STREAM scale latency: 1.13 nanoseconds
6 STREAM scale bandwidth: 14166.95 MB/sec
7 STREAM add latency: 1.15 nanoseconds
8 STREAM add bandwidth: 20818.63 MB/sec
9 STREAM triad latency: 1.39 nanoseconds
10 STREAM triad bandwidth: 17211.81 MB/sec
11 8
12 STREAM copy latency: 1.56 nanoseconds
13 STREAM copy bandwidth: 10273.07 MB/sec
14 STREAM scale latency: 1.50 nanoseconds
15 STREAM scale bandwidth: 10701.89 MB/sec
16 STREAM add latency: 1.20 nanoseconds
17 STREAM add bandwidth: 19996.68 MB/sec
18 STREAM triad latency: 1.93 nanoseconds
19 STREAM triad bandwidth: 12443.70 MB/sec
20 16
21 STREAM copy latency: 2.52 nanoseconds
22 STREAM copy bandwidth: 6357.71 MB/sec
23 STREAM scale latency: 2.48 nanoseconds
24 STREAM scale bandwidth: 6454.95 MB/sec
25 STREAM add latency: 1.67 nanoseconds
26 STREAM add bandwidth: 14362.51 MB/sec
27 STREAM triad latency: 3.65 nanoseconds
28 STREAM triad bandwidth: 6572.85 MB/sec
29 24
30 STREAM copy latency: 2.44 nanoseconds
31 STREAM copy bandwidth: 6554.24 MB/sec
32 STREAM scale latency: 2.41 nanoseconds
33 STREAM scale bandwidth: 6642.80 MB/sec
34 STREAM add latency: 1.44 nanoseconds
35 STREAM add bandwidth: 16695.82 MB/sec
36 STREAM triad latency: 3.61 nanoseconds
37 STREAM triad bandwidth: 6639.18 MB/sec
38
39 lscpu
40 架构: x86_64
41 CPU 运行模式:32-bit, 64-bit
42 字节序: Little Endian
43 Address sizes: 43 bits physical, 48 bits virtual
44 CPU: 64
45 在线 CPU 列表:0-63
46 每个核的线程数: 2
47 每个座的核数: 16
48 座: 2
49 NUMA 节点:4
50 厂商 ID:HygonGenuine
51 CPU 系列:24
52 型号: 1
53 型号名称: Hygon C86 5280 16-core Processor
54 步进: 1
55 Frequency boost: enabled
56 CPU MHz:2799.311
57 CPU 最大 MHz:2500.0000
58 CPU 最小 MHz:1600.0000
59 BogoMIPS: 4999.36
60 虚拟化: AMD-V
61 L1d 缓存:1 MiB
62 L1i 缓存:2 MiB
63 L2 缓存:16 MiB
64 L3 缓存:64 MiB
65 NUMA 节点0 CPU:0-7,32-39
66 NUMA 节点1 CPU:8-15,40-47
67 NUMA 节点2 CPU:16-23,48-55
68 NUMA 节点3 CPU:24-31,56-63
69 Vulnerability Itlb multihit: Not affected
70 Vulnerability L1tf: Not affected
71 Vulnerability Mds: Not affected
72 Vulnerability Meltdown: Not affected
73 Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
74 Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
75 Vulnerability Spectre v2: Mitigation; Full AMD retpoline, IBPB conditional, STIBP disabled, RSB
76 filling
77 Vulnerability Srbds: Not affected
78 Vulnerability Tsx async abort: Not affected
79 标记: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse3
80 6 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdts
81 cp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm
82 aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe p
83 opcnt xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy
84 abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfct
85 r_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate sme ssbd sev
86 ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt s
87 ha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt
88 lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassist
89 s pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov suc
90 cor smca
1 lscpu
2 Architecture: x86_64
3 CPU op-mode(s): 32-bit, 64-bit
4 Byte Order: Little Endian
5 CPU(s): 104
6 On-line CPU(s) list: 0-103
7 Thread(s) per core: 2
8 Core(s) per socket: 26
9 Socket(s): 2
10 NUMA node(s): 2
11 Vendor ID: GenuineIntel
12 CPU family: 6
13 Model: 85
14 Model name: Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz
15 Stepping: 7
16 CPU MHz: 3200.000
17 CPU max MHz: 3800.0000
18 CPU min MHz: 1200.0000
19 BogoMIPS: 4998.89
20 Virtualization: VT-x
21 L1d cache: 32K
22 L1i cache: 32K
23 L2 cache: 1024K
24 L3 cache: 36608K
25 NUMA node0 CPU(s): 0-25,52-77
26 NUMA node1 CPU(s): 26-51,78-103
27
28 time for i in $(seq 0 8 51); do echo $i; numactl -C $i -m 0 ./bin/stream -W 5 -N 5 -M 64M; done
29 0
30 STREAM copy latency: 1.15 nanoseconds
31 STREAM copy bandwidth: 13941.80 MB/sec
32 STREAM scale latency: 1.16 nanoseconds
33 STREAM scale bandwidth: 13799.89 MB/sec
34 STREAM add latency: 1.31 nanoseconds
35 STREAM add bandwidth: 18318.23 MB/sec
36 STREAM triad latency: 1.56 nanoseconds
37 STREAM triad bandwidth: 15356.72 MB/sec
38 16
39 STREAM copy latency: 1.12 nanoseconds
40 STREAM copy bandwidth: 14293.68 MB/sec
41 STREAM scale latency: 1.13 nanoseconds
42 STREAM scale bandwidth: 14162.47 MB/sec
43 STREAM add latency: 1.31 nanoseconds
44 STREAM add bandwidth: 18293.27 MB/sec
45 STREAM triad latency: 1.53 nanoseconds
46 STREAM triad bandwidth: 15692.47 MB/sec
47 32
48 STREAM copy latency: 1.52 nanoseconds
49 STREAM copy bandwidth: 10551.71 MB/sec
50 STREAM scale latency: 1.52 nanoseconds
51 STREAM scale bandwidth: 10508.33 MB/sec
52 STREAM add latency: 1.38 nanoseconds
53 STREAM add bandwidth: 17363.22 MB/sec
54 STREAM triad latency: 2.00 nanoseconds
55 STREAM triad bandwidth: 12024.52 MB/sec
56 40
57 STREAM copy latency: 1.49 nanoseconds
58 STREAM copy bandwidth: 10758.50 MB/sec
59 STREAM scale latency: 1.50 nanoseconds
60 STREAM scale bandwidth: 10680.17 MB/sec
61 STREAM add latency: 1.34 nanoseconds
62 STREAM add bandwidth: 17948.34 MB/sec
63 STREAM triad latency: 1.98 nanoseconds
64 STREAM triad bandwidth: 12133.22 MB/sec
65 48
66 STREAM copy latency: 1.49 nanoseconds
67 STREAM copy bandwidth: 10736.56 MB/sec
68 STREAM scale latency: 1.50 nanoseconds
69 STREAM scale bandwidth: 10692.93 MB/sec
70 STREAM add latency: 1.34 nanoseconds
71 STREAM add bandwidth: 17902.85 MB/sec
72 STREAM triad latency: 1.96 nanoseconds
73 STREAM triad bandwidth: 12239.44 MB/sec
1 time for i in $(seq 0 8 51); do echo $i; numactl -C $i -m 0 ./bin/stream -W 5 -N 5 -M 64M; done
2 0
3 STREAM copy latency: 1.59 nanoseconds
4 STREAM copy bandwidth: 10092.31 MB/sec
5 STREAM scale latency: 1.57 nanoseconds
6 STREAM scale bandwidth: 10169.16 MB/sec
7 STREAM add latency: 1.31 nanoseconds
8 STREAM add bandwidth: 18360.83 MB/sec
9 STREAM triad latency: 2.28 nanoseconds
10 STREAM triad bandwidth: 10503.81 MB/sec
11 8
12 STREAM copy latency: 1.55 nanoseconds
13 STREAM copy bandwidth: 10312.14 MB/sec
14 STREAM scale latency: 1.56 nanoseconds
15 STREAM scale bandwidth: 10283.70 MB/sec
16 STREAM add latency: 1.30 nanoseconds
17 STREAM add bandwidth: 18416.26 MB/sec
18 STREAM triad latency: 2.23 nanoseconds
19 STREAM triad bandwidth: 10777.08 MB/sec
20 16
21 STREAM copy latency: 2.02 nanoseconds
22 STREAM copy bandwidth: 7914.25 MB/sec
23 STREAM scale latency: 2.02 nanoseconds
24 STREAM scale bandwidth: 7919.85 MB/sec
25 STREAM add latency: 1.39 nanoseconds
26 STREAM add bandwidth: 17276.06 MB/sec
27 STREAM triad latency: 2.92 nanoseconds
28 STREAM triad bandwidth: 8231.18 MB/sec
29 24
30 STREAM copy latency: 1.99 nanoseconds
31 STREAM copy bandwidth: 8032.18 MB/sec
32 STREAM scale latency: 1.98 nanoseconds
33 STREAM scale bandwidth: 8061.12 MB/sec
34 STREAM add latency: 1.39 nanoseconds
35 STREAM add bandwidth: 17313.94 MB/sec
36 STREAM triad latency: 2.88 nanoseconds
37 STREAM triad bandwidth: 8318.93 MB/sec
38
39 lscpu
40 Architecture: x86_64
41 CPU op-mode(s): 32-bit, 64-bit
42 Byte Order: Little Endian
43 CPU(s): 64
44 On-line CPU(s) list: 0-63
45 Thread(s) per core: 2
46 Core(s) per socket: 16
47 Socket(s): 2
48 NUMA node(s): 2
49 Vendor ID: GenuineIntel
50 CPU family: 6
51 Model: 79
52 Model name: Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GHz
53 Stepping: 1
54 CPU MHz: 2500.000
55 CPU max MHz: 3000.0000
56 CPU min MHz: 1200.0000
57 BogoMIPS: 5000.06
58 Virtualization: VT-x
59 L1d cache: 32K
60 L1i cache: 32K
61 L2 cache: 256K
62 L3 cache: 40960K
63 NUMA node0 CPU(s): 0-15,32-47
64 NUMA node1 CPU(s): 16-31,48-63
1 time for i in $(seq 0 8 255); do echo $i; numactl -C $i -m 0 ./bin/stream -W 5 -N 5 -M 64M; done 2 0 3 STREAM copy latency: 0.49 nanoseconds 4 STREAM copy bandwidth: 32561.30 MB/sec 5 STREAM scale latency: 0.49 nanoseconds 6 STREAM scale bandwidth: 32620.66 MB/sec 7 STREAM add latency: 0.87 nanoseconds 8 STREAM add bandwidth: 27575.20 MB/sec 9 STREAM triad latency: 0.70 nanoseconds 10 STREAM triad bandwidth: 34397.15 MB/sec 11 8 12 STREAM copy latency: 0.52 nanoseconds 13 STREAM copy bandwidth: 30764.47 MB/sec 14 STREAM scale latency: 0.53 nanoseconds 15 STREAM scale bandwidth: 30056.59 MB/sec 16 STREAM add latency: 0.87 nanoseconds 17 STREAM add bandwidth: 27575.20 MB/sec 18 STREAM triad latency: 0.69 nanoseconds 19 STREAM triad bandwidth: 34789.45 MB/sec 20 16 21 STREAM copy latency: 0.53 nanoseconds 22 STREAM copy bandwidth: 30173.15 MB/sec 23 STREAM scale latency: 0.54 nanoseconds 24 STREAM scale bandwidth: 29895.91 MB/sec 25 STREAM add latency: 0.87 nanoseconds 26 STREAM add bandwidth: 27496.11 MB/sec 27 STREAM triad latency: 0.70 nanoseconds S28 TREAM triad bandwidth: 34128.93 MB/sec 29 24 30 STREAM copy latency: 0.78 nanoseconds 30 STREAM copy bandwidth: 20417.69 MB/sec 32 STREAM scale latency: 0.51 nanoseconds 33 STREAM scale bandwidth: 31354.70 MB/sec 34 STREAM add latency: 0.87 nanoseconds 35 STREAM add bandwidth: 27548.79 MB/sec 36 STREAM triad latency: 0.69 nanoseconds 37 STREAM triad bandwidth: 34589.22 MB/sec 38 32 39 STREAM copy latency: 0.60 nanoseconds 40 STREAM copy bandwidth: 26862.34 MB/sec 41 STREAM scale latency: 0.58 nanoseconds 42 STREAM scale bandwidth: 27376.00 MB/sec 43 STREAM add latency: 0.87 nanoseconds 44 STREAM add bandwidth: 27518.66 MB/sec 45 STREAM triad latency: 0.78 nanoseconds 46 STREAM triad bandwidth: 30779.17 MB/sec 47 40 48 STREAM copy latency: 0.59 nanoseconds 49 STREAM copy bandwidth: 27230.21 MB/sec 50 STREAM scale latency: 0.59 nanoseconds 51 STREAM scale bandwidth: 27284.18 MB/sec 52 STREAM add latency: 0.87 nanoseconds 53 STREAM add bandwidth: 27503.63 MB/sec 54 STREAM triad latency: 0.77 nanoseconds 55 STREAM triad bandwidth: 31242.48 MB/sec 56 48 57 STREAM copy latency: 0.59 nanoseconds 58 STREAM copy bandwidth: 27102.37 MB/sec 59 STREAM scale latency: 0.59 nanoseconds 60 STREAM scale bandwidth: 27164.08 MB/sec 61 STREAM add latency: 0.87 nanoseconds 62 STREAM add bandwidth: 27503.63 MB/sec 63 STREAM triad latency: 0.76 nanoseconds 64 STREAM triad bandwidth: 31422.90 MB/sec 65 56 66 STREAM copy latency: 0.92 nanoseconds 67 STREAM copy bandwidth: 17453.54 MB/sec 68 STREAM scale latency: 0.59 nanoseconds 69 STREAM scale bandwidth: 27267.55 MB/sec 70 STREAM add latency: 0.87 nanoseconds 71 STREAM add bandwidth: 27488.61 MB/sec 72 STREAM triad latency: 0.77 nanoseconds 73 STREAM triad bandwidth: 31169.92 MB/sec 74 64 75 STREAM copy latency: 0.88 nanoseconds 76 STREAM copy bandwidth: 18231.15 MB/sec 77 STREAM scale latency: 0.84 nanoseconds 78 STREAM scale bandwidth: 18976.06 MB/sec 79 STREAM add latency: 0.91 nanoseconds 80 STREAM add bandwidth: 26413.87 MB/sec 81 STREAM triad latency: 1.08 nanoseconds 82 STREAM triad bandwidth: 22310.12 MB/sec 83 72 84 STREAM copy latency: 0.86 nanoseconds 85 STREAM copy bandwidth: 18552.45 MB/sec 86 STREAM scale latency: 0.84 nanoseconds 87 STREAM scale bandwidth: 19113.88 MB/sec 88 STREAM add latency: 0.91 nanoseconds 89 STREAM add bandwidth: 26375.81 MB/sec 90 STREAM triad latency: 1.08 nanoseconds 91 STREAM triad bandwidth: 22151.79 MB/sec 92 80 93 STREAM copy latency: 0.89 nanoseconds 94 STREAM copy bandwidth: 18037.59 MB/sec 95 STREAM scale latency: 0.87 nanoseconds 96 STREAM scale bandwidth: 18398.59 MB/sec 97 STREAM add latency: 0.92 nanoseconds 98 STREAM add bandwidth: 26142.91 MB/sec 99 STREAM triad latency: 1.08 nanoseconds 100 STREAM triad bandwidth: 22133.53 MB/sec 101 88 102 STREAM copy latency: 0.93 nanoseconds 103 STREAM copy bandwidth: 17119.60 MB/sec 104 STREAM scale latency: 0.94 nanoseconds 105 STREAM scale bandwidth: 17030.54 MB/sec 106 STREAM add latency: 0.92 nanoseconds 107 STREAM add bandwidth: 26146.30 MB/sec 108 STREAM triad latency: 1.08 nanoseconds 109 STREAM triad bandwidth: 22159.10 MB/sec 110 96 111 STREAM copy latency: 1.39 nanoseconds 112 STREAM copy bandwidth: 11512.93 MB/sec 113 STREAM scale latency: 0.87 nanoseconds 114 STREAM scale bandwidth: 18406.16 MB/sec 115 STREAM add latency: 0.92 nanoseconds 116 STREAM add bandwidth: 25991.03 MB/sec 117 STREAM triad latency: 1.09 nanoseconds 118 STREAM triad bandwidth: 22078.91 MB/sec 119 104 120 STREAM copy latency: 0.86 nanoseconds 121 STREAM copy bandwidth: 18546.04 MB/sec 122 STREAM scale latency: 1.39 nanoseconds 123 STREAM scale bandwidth: 11518.85 MB/sec 124 STREAM add latency: 0.91 nanoseconds 125 STREAM add bandwidth: 26300.01 MB/sec 126 STREAM triad latency: 1.06 nanoseconds 127 STREAM triad bandwidth: 22599.38 MB/sec 128 112 129 STREAM copy latency: 0.88 nanoseconds 130 STREAM copy bandwidth: 18253.46 MB/sec 131 STREAM scale latency: 0.85 nanoseconds 132 STREAM scale bandwidth: 18758.59 MB/sec 133 STREAM add latency: 0.91 nanoseconds 134 STREAM add bandwidth: 26413.87 MB/sec 135 STREAM triad latency: 1.06 nanoseconds 136 STREAM triad bandwidth: 22648.95 MB/sec 137 120 138 STREAM copy latency: 0.86 nanoseconds 139 STREAM copy bandwidth: 18607.75 MB/sec 140 STREAM scale latency: 0.84 nanoseconds 141 STREAM scale bandwidth: 18957.30 MB/sec 142 STREAM add latency: 0.91 nanoseconds 143 STREAM add bandwidth: 26427.74 MB/sec 144 STREAM triad latency: 1.08 nanoseconds 145 STREAM triad bandwidth: 22313.83 MB/sec 146 128 147 STREAM copy latency: 0.82 nanoseconds 148 STREAM copy bandwidth: 19432.13 MB/sec 149 STREAM scale latency: 0.87 nanoseconds 150 STREAM scale bandwidth: 18421.31 MB/sec 151 STREAM add latency: 0.98 nanoseconds 152 STREAM add bandwidth: 24546.03 MB/sec 153 STREAM triad latency: 1.06 nanoseconds 154 STREAM triad bandwidth: 22702.59 MB/sec 155 136 156 STREAM copy latency: 0.74 nanoseconds 157 STREAM copy bandwidth: 21568.01 MB/sec 158 STREAM scale latency: 0.74 nanoseconds 159 STREAM scale bandwidth: 21668.99 MB/sec 160 STREAM add latency: 0.90 nanoseconds 161 STREAM add bandwidth: 26697.59 MB/sec 162 STREAM triad latency: 0.91 nanoseconds 163 STREAM triad bandwidth: 26320.64 MB/sec 164 144 165 STREAM copy latency: 0.79 nanoseconds 166 STREAM copy bandwidth: 20268.45 MB/sec 167 STREAM scale latency: 0.66 nanoseconds 168 STREAM scale bandwidth: 24279.61 MB/sec 169 STREAM add latency: 0.89 nanoseconds 170 STREAM add bandwidth: 26822.08 MB/sec 171 STREAM triad latency: 0.84 nanoseconds 172 STREAM triad bandwidth: 28540.76 MB/sec 173 152 174 STREAM copy latency: 0.85 nanoseconds 175 STREAM copy bandwidth: 18903.90 MB/sec 176 STREAM scale latency: 0.56 nanoseconds 177 STREAM scale bandwidth: 28734.25 MB/sec 178 STREAM add latency: 0.88 nanoseconds 179 STREAM add bandwidth: 27335.58 MB/sec 180 STREAM triad latency: 0.75 nanoseconds 181 STREAM triad bandwidth: 31911.01 MB/sec 182 160 183 STREAM copy latency: 0.64 nanoseconds 184 STREAM copy bandwidth: 25068.68 MB/sec 185 STREAM scale latency: 0.63 nanoseconds 186 STREAM scale bandwidth: 25550.68 MB/sec 187 STREAM add latency: 0.88 nanoseconds 188 STREAM add bandwidth: 27313.33 MB/sec 189 STREAM triad latency: 0.82 nanoseconds 190 STREAM triad bandwidth: 29416.50 MB/sec 191 168 192 STREAM copy latency: 0.61 nanoseconds 193 STREAM copy bandwidth: 26232.33 MB/sec 194 STREAM scale latency: 0.60 nanoseconds 195 STREAM scale bandwidth: 26717.96 MB/sec 196 STREAM add latency: 0.88 nanoseconds 197 STREAM add bandwidth: 27398.82 MB/sec 198 STREAM triad latency: 0.79 nanoseconds 199 STREAM triad bandwidth: 30411.86 MB/sec 200 176 201 STREAM copy latency: 0.58 nanoseconds 202 STREAM copy bandwidth: 27380.19 MB/sec 203 STREAM scale latency: 0.58 nanoseconds 204 STREAM scale bandwidth: 27740.96 MB/sec 205 STREAM add latency: 0.94 nanoseconds 206 STREAM add bandwidth: 25666.31 MB/sec 207 STREAM triad latency: 0.77 nanoseconds 208 STREAM triad bandwidth: 31150.63 MB/sec 209 184 210 STREAM copy latency: 0.90 nanoseconds 211 STREAM copy bandwidth: 17730.21 MB/sec 212 STREAM scale latency: 0.57 nanoseconds 213 STREAM scale bandwidth: 27918.40 MB/sec 214 STREAM add latency: 0.87 nanoseconds 215 STREAM add bandwidth: 27458.61 MB/sec 216 STREAM triad latency: 0.76 nanoseconds 217 STREAM triad bandwidth: 31457.27 MB/sec 218 192 219 STREAM copy latency: 0.91 nanoseconds 220 STREAM copy bandwidth: 17558.57 MB/sec 221 STREAM scale latency: 0.88 nanoseconds 222 STREAM scale bandwidth: 18115.49 MB/sec 223 STREAM add latency: 0.92 nanoseconds 224 STREAM add bandwidth: 26031.36 MB/sec 225 STREAM triad latency: 1.12 nanoseconds 226 STREAM triad bandwidth: 21443.95 MB/sec 227 200 228 STREAM copy latency: 1.34 nanoseconds 229 STREAM copy bandwidth: 11911.40 MB/sec 230 STREAM scale latency: 0.85 nanoseconds 231 STREAM scale bandwidth: 18893.26 MB/sec 232 STREAM add latency: 0.91 nanoseconds 233 STREAM add bandwidth: 26306.88 MB/sec 234 STREAM triad latency: 1.09 nanoseconds 235 STREAM triad bandwidth: 22013.73 MB/sec 236 208 237 STREAM copy latency: 1.36 nanoseconds 238 STREAM copy bandwidth: 11724.12 MB/sec 239 STREAM scale latency: 0.86 nanoseconds 240 STREAM scale bandwidth: 18631.00 MB/sec 241 STREAM add latency: 0.92 nanoseconds 242 STREAM add bandwidth: 26166.69 MB/sec 243 STREAM triad latency: 1.10 nanoseconds 244 STREAM triad bandwidth: 21763.86 MB/sec 245 216 246 STREAM copy latency: 0.88 nanoseconds 247 STREAM copy bandwidth: 18270.85 MB/sec 248 STREAM scale latency: 0.85 nanoseconds 249 STREAM scale bandwidth: 18848.15 MB/sec 250 STREAM add latency: 0.92 nanoseconds 251 STREAM add bandwidth: 26176.90 MB/sec 252 STREAM triad latency: 1.10 nanoseconds 252 STREAM triad bandwidth: 21799.20 MB/sec 254 224 255 STREAM copy latency: 0.89 nanoseconds 256 STREAM copy bandwidth: 18047.29 MB/sec 257 STREAM scale latency: 0.86 nanoseconds 258 STREAM scale bandwidth: 18677.66 MB/sec 259 STREAM add latency: 0.92 nanoseconds 260 STREAM add bandwidth: 26112.39 MB/sec 261 STREAM triad latency: 1.09 nanoseconds 262 STREAM triad bandwidth: 21966.89 MB/sec 263 232 264 STREAM copy latency: 1.35 nanoseconds 265 STREAM copy bandwidth: 11818.58 MB/sec 266 STREAM scale latency: 0.82 nanoseconds 267 STREAM scale bandwidth: 19568.11 MB/sec 268 STREAM add latency: 0.91 nanoseconds 269 STREAM add bandwidth: 26469.44 MB/sec 270 STREAM triad latency: 1.06 nanoseconds 271 STREAM triad bandwidth: 22702.59 MB/sec 272 240 273 STREAM copy latency: 0.87 nanoseconds 274 STREAM copy bandwidth: 18325.74 MB/sec 275 STREAM scale latency: 0.83 nanoseconds 276 STREAM scale bandwidth: 19331.37 MB/sec 277 STREAM add latency: 0.91 nanoseconds 278 STREAM add bandwidth: 26455.52 MB/sec 279 STREAM triad latency: 1.06 nanoseconds 280 STREAM triad bandwidth: 22580.37 MB/sec 281 248 282 STREAM copy latency: 0.87 nanoseconds 283 STREAM copy bandwidth: 18418.79 MB/sec 284 STREAM scale latency: 0.84 nanoseconds 285 STREAM scale bandwidth: 19019.09 MB/sec 286 STREAM add latency: 0.91 nanoseconds 287 STREAM add bandwidth: 26483.37 MB/sec 288 STREAM triad latency: 1.08 nanoseconds 289 STREAM triad bandwidth: 22148.13 MB/sec
总结下几个CPU用stream测试访问内存的RT以及抖动和带宽对比数据,重点关注带宽,这个测试中时延不重要
最小RT | 最大RT | 最大copy bandwidth | 最小copy bandwidth | |
---|---|---|---|---|
申威3231(2numa node) | 7.09 | 8.75 | 2256.59 MB/sec | 1827.88 MB/sec |
飞腾2500(16 numa node) | 2.84 | 10.34 | 5638.21 MB/sec | 1546.68 MB/sec |
鲲鹏920(4 numa node) | 1.84 | 3.87 | 8700.75 MB/sec | 4131.81 MB/sec |
海光7280(8 numa node) | 1.38 | 2.58 | 11591.48 MB/sec | 6206.99 MB/sec |
海光5280(4 numa node) | 1.22 | 2.52 | 13166.34 MB/sec | 6357.71 MB/sec |
Intel8269CY(2 numa node) | 1.12 | 1.52 | 14293.68 MB/sec | 10551.71 MB/sec |
Intel E5-2682(2 numa node) | 1.58 | 2.02 | 10092.31 MB/sec | 7914.25 MB/sec |
AMD EPYC 7T83(4 numa node) | 0.49 | 1.39 | 32561.30 MB/sec | 11512.93 MB/sec |
Y7 | 1.83 | 3.48 | 8764.72 MB/sec | 4593.25 MB/sec |
从以上数据可以看出这5款CPU性能一款比一款好,飞腾2500慢的core上延时快到intel 8269的10倍了,平均延时5倍以上了。延时数据基本和单核上测试sysbench TPS一致。性能差不多就是:常数 * 主频/RT。
用不同的node上的core 跑lat_mem_rd测试访问node0内存的RT,只取最大64M的时延,时延和node距离完全一致
RT变化 | |
---|---|
飞腾2500(16 numa node) | core:0 149.976 core:8 168.805 core:16 191.415 core:24 178.283 core:32 170.814 core:40 185.699 core:48 212.281 core:56 202.479 core:64 426.176 core:72 444.367 core:80 465.894 core:88 452.245 core:96 448.352 core:104 460.603 core:112 485.989 core:120 490.402 |
鲲鹏920(4 numa node) | core:0 117.323 core:24 135.337 core:48 197.782 core:72 219.416 |
海光7280(8 numa node) | numa0 106.839 numa1 168.583 numa2 163.925 numa3 163.690 numa4 289.628 numa5 288.632 numa6 236.615 numa7 291.880 分割行 enabled die interleaving core:0 153.005 core:16 152.458 core:32 272.057 core:48 269.441 |
海光5280(4 numa node) | core:0 102.574 core:8 160.989 core:16 286.850 core:24 231.197 |
海光7260(1 numa node) | core:0 265 |
Intel 8269CY(2 numa node) | core:0 69.792 core:26 93.107 |
申威3231(2numa node) | core:0 215.146 core:32 282.443 |
AMD EPYC 7T83(4 numa node) | core:0 71.656 core:32 80.129 core:64 131.334 core:96 129.563 |
Y7(2Die,2node,1socket) | core:8 42.395 core:40 36.434 core:104 105.745 core:88 124.384 core:24 62.979 core:8 69.324 core:64 137.233 core:88 127.250 133ns 205ns (待测) |
测试命令:
1 for i in $(seq 0 8 127); do echo core:$i; numactl -C $i -m 0 ./bin/lat_mem_rd -W 5 -N 5 -t 64M; done >lat.log 2>&1
测试结果和numactl -H 看到的node distance完全一致,芯片厂家应该就是这样测试然后把这个延迟当做距离写进去了
AMD EPYC 7T83(4 numa node)的时延相对抖动有点大,这和架构多个小Die合并成一块CPU有关。
1 grep -E "core|64.00000" lat.log 2 core:0 3 64.00000 71.656 4 core:32 5 64.00000 80.129 6 core:64 7 64.00000 131.334 8 core:88 9 64.00000 136.774 10 core:96 11 64.00000 129.563 12 core:120 13 64.00000 140.151
AMD EPYC 7T83(4 numa node)比Intel 8269时延要大,但是带宽也高很多
3A5000为龙芯,执行的命令为./lat_mem_rd 128M 4096,其中 4096 参数为跳步大小。其基本原理是,通过按 给定间隔去循环读一定大小的内存区域,测量每个读平均的时间。如果区域大小小于 L1 Cache 大 小,时间应该接近 L1 的访问延迟;如果大于 L1 小于 L2,则接近 L2 访问延迟;依此类推。图中横坐 标为访问的字节数,纵坐标为访存的拍数(cycles)。
基于跳步访问的 3A5000 和 Zen1、Skylake 各级延迟的比较(cycles)
下图给出了 LMbench 测试得到的访存操作的并发性,执行的命令为./par_mem。访存操作的并 发性是各级 Cache 和内存所支持并发访问的能力。在 LMbench 中,访存操作并发性的测试是设计一 个链表,不断地遍历访问下一个链表中的元素,链表所跳的距离和需要测量的 Cache 容量相关,在 一段时间能并发的发起对链表的追逐操作,也就是同时很多链表在遍历,如果发现这一段时间内 能同时完成 N 个链表的追逐操作,就认为访存的并发操作是 N。
下图列出了三款处理器的功能部件操作延迟数据,使用的命令是./lat_ops。
LMbench 包含了 STREAM 带宽测试工具,可以用来测试可持续的内存访问带宽情况。图表12.25列 出了三款处理器的 STREAM 带宽数据,其中 STREAM 数组大小设置为 1 亿个元素,采用 OpenMP 版本 同时运行四个线程来测试满载带宽;相应测试平台均为 CPU 的两个内存控制器各接一根内存条, 3A5000 和 Zen1 用 DDR4 3200 内存条,Skylake 用 DDR4 2400 内存条(它最高只支持这个规格)。
从数据可以看到,虽然硬件上 3A5000 和 Zen1 都实现了 DDR4 3200,但 3A5000 的实测可持续带宽 还是有一定差距。用户程序看到的内存带宽不仅仅和内存的物理频率有关系,也和处理器内部的 各种访存队列、内存控制器的调度策略、预取器和内存时序参数设置等相关,需要进行更多分析 来定位具体的瓶颈点。像 STREAM 这样的软件测试工具,能够更好地反映某个子系统的综合能力, 因而被广泛采用。
AMD单核跑分数据比较好
MySQL 查询场景下Intel的性能好很多
xdb比社区版性能要好
MySQL8.0比5.7在多核锁竞争场景下性能要好
intel最好,AMD接近Intel,海光差的比较远但是又比鲲鹏好很多,飞腾最差,尤其是跨socket简直是灾难
麒麟OS性能也比CentOS略差一些
从perf指标来看 鲲鹏920的L1d命中率高于8163是因为鲲鹏L1 size大;L2命中率低于8163,同样是因为鲲鹏 L2 size小;同样L1i 鲲鹏也大于8163,但是实际跑起来L1i Miss Rate更高,这说明 ARM对 L1d 使用效率低
整体来说AMD用领先了一代的工艺(7nm VS 14nm),在MySQL查询场景中终于可以接近Intel了,但是海光、鲲鹏、飞腾还是不给力。
鲲鹏920 和 8163 在 MySQL 场景下的 perf 指标对比
整体对比 | |||
---|---|---|---|
指标 | X86 | ARM | 增加幅度 |
IPC | 0.4979 | 0.495 | -0.6% |
Branchs | 237606414772 | 415979894985 | 75.1% |
Branch-misses | 8104247620 | 28983836845 | 257.6% |
Branch-missed rate | 0.034 | 0.070 | 104.3% |
内存读带宽(GB/S) | 25.0 | 25.0 | -0.2% |
内存写带宽(GB/S) | 24.6 | 67.8 | 175.5% |
内存读写带宽(GB/S) | 49.7 | 92.8 | 86.8% |
UNALIGNED_ACCESS | 1329146645 | 13686011901 | 929.7% |
L1d_MISS_RATIO | 0.06055 | 0.04281 | -29.3% |
L1d_MISS_RATE | 0.01645 | 0.01711 | 4.0% |
L2_MISS_RATIO | 0.34824 | 0.47162 | 35.4% |
L2_MISS_RATE | 0.00577 | 0.03493 | 504.8% |
L1_ITLB_MISS_RATE | 0.0028 | 0.005 | 78.6% |
L1_DTLB_MISS_RATE | 0.0025 | 0.0102 | 308.0% |
context-switchs | 8407195 | 11614981 | 38.2% |
Pagefault | 228371 | 741189 | 224.6% |
服务热线
1391-024-6332
Copyright 2015-2018 www.intsavi.com.cn All Rights Reserved
电话:010-62980070 010-62961051 手机:13910246332
版权所有北京赛维博信科技发展有限公司 备案号:京ICP备14043711号-1 京ICP备14043711号-3